REALISABLE SETS OF CATENARY DEGREES OF NUMERICAL MONOIDS
نویسندگان
چکیده
منابع مشابه
On the set of catenary degrees of finitely generated cancellative commutative monoids
The catenary degree of an element s of a cancellative commutative monoid S is a nonnegative integer measuring the distance between the irreducible factorizations of s. The catenary degree of the monoid S, defined as the supremum over all catenary degrees occurring in S, has been heavily studied as an invariant of nonunique factorization. In this paper, we investigate the set C(S) of catenary de...
متن کاملShifts of generators and delta sets of numerical monoids
Let S be a numerical monoid with minimal generating set 〈n1, . . . , nt〉. For m ∈ S, if m = Pt i=1 xini, then Pt i=1 xi is called a factorization length of m. We denote by L(m) = {m1, . . . , mk} (where mi < mi+1 for each 1 ≤ i < k) the set of all possible factorization lengths of m. The Delta set of m is defined by ∆(m) = {mi+1 − mi | 1 ≤ i < k } and the Delta set of S by ∆(S) = ∪m∈S∆(m). In t...
متن کاملDegrees of M-fuzzy families of independent L-fuzzy sets
The present paper studies fuzzy matroids in view of degree. First wegeneralize the notion of $(L,M)$-fuzzy independent structure byintroducing the degree of $M$-fuzzy family of independent $L$-fuzzysets with respect to a mapping from $L^X$ to $M$. Such kind ofdegrees is proved to satisfy some axioms similar to those satisfiedby $(L,M)$-fuzzy independent structure. ...
متن کاملDelta Sets of Numerical Monoids Are Eventually Periodic
Let M be a numerical monoid (i.e., an additive submonoid of N0) with minimal generating set 〈n1, . . . , nt〉. For m ∈ M , if m = Pt i=1 xini, then Pt i=1 xi is called a factorization length of m. We denote by L(m) = {m1, . . . , mk} (where mi < mi+1 for each 1 ≤ i < k) the set of all possible factorization lengths of m. The Delta set of m is defined by ∆(m) = {mi+1 −mi | 1 ≤ i < k } and the Del...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2017
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972717000995